2014 年药物研发热门靶点述评

目录

- 1. 癌症
- 2. 自身免疫疾病
- 3. 心血管
- 4. 糖尿病
- 5. 病毒感染
- 6. 神经系统疾病

1. 癌症

2000年后肿瘤信号网络被逐渐阐释、完善,大量的分子靶向药物进入临床研究、走上市场,近年针对受体酪氨酸激酶靶点如Bcr-Abl (见1.1)、VEGF/VEGFRs (见1.2)、PDGF/PDGFRs (见1.3)、EGFR/HER2 (1.5)、ALk (1.7)已有多个药物上市,me-too 品种的研发逐渐放缓,但扩展适应症、克服耐药性、优化治疗方案的研究还没有结束。

目前肿瘤信号网络中,FGFR (见 1.4)、c-Met (见 1.6)、HER3 (见 1.5)、Hedgehog (见 1.13)等靶点吸引了不少的研究,但最热的当是 PI3K/Akt/mTOR (见 1.15)、Raf/MEK/ERK (见 1.16)两条细胞内信号通路。2013年 FDA 批准了 BTK 抑制剂 ibrutinib,对 CLL 的疗效很好,吸引了一些药企开发 me-too/me-better 药物。

涉及细胞周期调控的靶点如 Aurora 激酶(见 1.8)、CDK (见 1.9)、ChK (见 1.10)也有不少新药在研,最耀眼的无疑是 CDK4/6 抑制剂,已经有三个分子推进到后期开发,而 Aurora 激酶和 ChK 抑制剂则大多在早期临床失败。针对 DNA 损伤修复的 PARP (见 1.11)的药物研发也回暖,而针对蛋白-蛋白相互左右的新靶点如 Bcl-2 (见 1.12)、MDM2 (见 1.14)、IAP 也有多个分子进入临床研究。

特别值得一提的是表观遗传调控剂,早年发现的阿扎胞苷、地西他滨等被证明为 DNA 甲基转移酶抑制剂,目前研究得最多的是 HDAC 抑制剂(见 1.17),表观遗传的其他靶点如组蛋白赖氨酸甲基转移酶 EZH2、组蛋白 H3 甲基转移酶 DOT1L、溴结构域蛋白 BET 等也开展了大量基础研究。

近来抗癌领域最耀眼的无疑是免疫疗法,调节 CTLA4、PD1/PDL1、4-1BB、OX40、CD27 等免疫检查点(见 1.18)可以激活 T 细胞免疫应答,而基因工程修饰的 CAR、TCR T 细胞的应用更是标志着个性化免疫治疗时代的到来。

1.1. Bcr-Abl 抑制剂

Bcr-Abl 抑制剂主要用于治疗慢性粒细胞白血病(CML),目前 FDA 已经批准伊马替尼、尼罗替尼、达沙替尼、ponatinib 等多个药物,其中第三代 Bcr-Abl 抑制剂 ponatinib 可克服 T315I 耐药突变。我国自主研发的氟马替尼、美迪替尼已经进入临床研究,广药集团的 ponatinib 类似物 HQP1351 即将申报临床。由于已经有多个药物上市,药企基本没有再研发新的 Bcr-Abl 抑制剂。

1.2. VEGF/VEGFRs 抑制剂

VEGF/VEGFRs 是经典的血管生成信号通路,可用于治疗多种实体瘤和湿性年龄相关性黄斑变性(AMD), FDA 已经批准的针对 VEGF/VEGFRs 单抗或融合蛋白有贝伐珠单抗、雷珠单抗、阿柏西普、ramucirumab,我国自主研发的康柏西普(商品名: 朗沐)已于 2013 年上市。

针对 VEGFR 的小分子往往对其他酪氨酸激酶也有抑制作用,这类药物也已经上市了索拉非尼、舒尼替尼等多个,我国也申报了许多类似物。值得注意的是,2014 年 FDA 批准 ramucirumab 用于治疗胃癌,江苏恒瑞自主研发的阿帕替尼也即将上市。

1.3. PDGF/PDGFRs 抑制剂

PDGFRs 与 VEGFRs 的相似度较高,很多小分子药物是 VEGFRs/PDGFRs 同时抑制的,比如索拉非尼、舒尼替尼、帕唑帕尼。2014 年 1 月 Bayer 支付 2550 万美元携手 Regeneron,共同开发 anti-PDGFRβ 单抗,联合阿柏西普用于治疗湿性 AMD;2014 年 5 月 Novartis 以 10.3 亿美元从 Ophthotech Corporation 买下 III 期 anti-PDGF 药物 Fovista,用于治疗湿性 AMD。

1.4. FGF/FGFRs 抑制剂

FGFRs 与 VEGFRs、PDGFRs 一样,也涉及肿瘤的增殖和血管的形成,但至今仍然没有 FGFRs 抑制剂上市。Boehringer Ingelheim 研发了 VEGFR/PDGFR/FGFR 抑制剂 nintedanib,用于治疗非小细胞肺癌、特发性肺纤维化,2014年1月获得 FDA 突破性药物资格。

我国自主研发了 FGFRs/VEGFRs 抑制剂德立替尼(lucitanib, E-3810, AL3810),几经辗转美国、日本的权益为 Clovis Oncology 所有,美、日、中以外的权益被 Servier 收购,目前该药在国内已经申报临床,并且得到了重大新药创制专项的支持。

新药	研发企业	靶点	主要适应症	状态
nintedanib	Boehringer Ingelheim	VEGFR/PDGFR/FGFR 抑制剂	NSCLC、IPF	Phase III
BGJ398	Novartis	FGFR 抑制剂	实体瘤	Phase II
AZD4547	AstraZeneca	FGFR 抑制剂	NSCLC、胃癌	Phase II
lucitanib	Servier	FGFR/VEGFR 抑制剂	乳腺癌、NSCLC	Phase II
LY2874455	Eli Lilly	FGFR 抑制剂	实体瘤	Phase I 失败

1.5. EGFR/HER2/HER3 抑制剂

EGFR、HER2、HER3 都是 ErbB 家族酪氨酸激酶,已上市的药物包括 anti-EGFR 单抗、anti-HER2 单抗及 ADC、EGFR 抑制剂、EGFR/HER2 抑制剂,用于治疗非小细胞肺癌、HER2 阳性乳腺癌、结直肠癌、头颈癌等实体瘤。

第三代 EGFR 抑制剂可克服 T790M 耐药突变,AZD9291、CO-1686 引起全球的关注,目前都已经获得 FDA 突破性药物资格。我国自主研发的艾维替尼、迈华替尼也能克服 T790M 突变,目前已经申报临床。

新药	研发企业	靶点	主要适应症	状态
曲妥珠单抗	Genentech	anti-HER2 单抗	HER2 阳性乳腺癌	1998 年上市
吉非替尼	AstraZeneca	EGFR 抑制剂	非小细胞肺癌	2003 年上市
厄洛替尼	Genentech	EGFR 抑制剂	非小细胞肺癌	2005 年上市

cetuximab	BMS/Eli Lilly	anti-EGFR 单抗	头颈癌、结直肠癌	2006 年上市
panitumumab	Amgen	anti-EGFR 单抗	结直肠癌	2006 年上市
拉帕替尼	GlaxoSmithKline	EGFR/HER2 抑制剂	HER2 阳性乳腺癌	2010 年上市
pertuzumab	Genentech	anti-HER2 单抗	HER2 阳性乳腺癌	2012 年上市
阿法替尼	Boehringer Ingelheim	EGFR/HER2 抑制剂	非小细胞肺癌	2013 年上市
T-DM1	Genentech	anti-HER2 ADC	HER2 阳性乳腺癌	2013 年上市
dacomitinib	Pfizer	EGFR/HER2 抑制剂	非小细胞肺癌	Phase III 失败
neratinib	Pfizer/Puma Biotech	EGFR/HER2 抑制剂	乳腺癌	Phase III
necitumumab	Eli Lilly	anti-EGFR 单抗	非小细胞肺癌	Phase III
AZD9291	AstraZeneca	EGFR T790M 抑制剂	非小细胞肺癌	Phase II
CO-1686	Clovis Oncology	EGFR T790M 抑制剂	非小细胞肺癌	Phase II
sapitinib	AstraZeneca	Pan-HER 抑制剂	非小细胞肺癌	Phase II
RG7597	Genentech	anti-EGFR/HER3 单抗	头颈癌、结直肠癌	Phase II
LJM716	Novartis	anti-HER3 单抗	食管癌	Phase I/II
RG7116	Roche	anti-HER3 单抗	实体瘤	Phase I
GSK2849330	GlaxoSmithKline	anti-HER3 单抗	肿瘤	Phase I
AEE788	Novartis	EGFR/HER2 抑制剂	胶质母细胞瘤	Phase I 失败

1.6. HGF/c-Met 抑制剂

c-Met 别名 HGFR,与其他生长因子受体一样,也是抗癌药研发的热门靶点,已经上市的 c-Met 抑制剂有克唑替尼、卡博替尼,但这两个分子抑制 c-Met 的同时还抑制了其他靶点。 onartuzumab、tivantinib 治疗非小细胞肺癌的 Ⅲ 期临床失败对选择性 c-Met 抑制剂的研发是个重大打击,可能需要寻找更好的患者筛选方法或适应症[2]。

AstraZeneca 从国内和记黄埔医药买下沃利替尼,ASCO2014 报道的数据显示[1],6 例乳头状肾细胞癌患者服用该药后,3 例实现部分应答,目前 AstraZeneca 重点开发该适应症。国内已经有多个 c-Met 抑制剂申报临床,包括和记黄埔的沃利替尼、贝达药业的 BPI-9016M、北京浦润奥的伯瑞替尼。

新药	研发企业	靶点	主要适应症	状态
克唑替尼	Pfizer	c-Met/ALK 抑制剂	ALK 阳性 NSCLC	2012 年上市
卡博替尼	Exelixis/BMS	KDR/c-Met 抑制剂	甲状腺髓样癌	2012 年上市
rilotumumab	Amgen/Astellas	anti-HGF 单抗	胃癌	Phase III
onartuzumab	Genentech	anti-Met 单抗	非小细胞肺癌	Phase III 失败
tivantinib	Daiichi Sankyo	c-Met 抑制剂	非小细胞肺癌	Phase III 失败
沃利替尼	AstraZeneca	c-Met 抑制剂	乳头状肾细胞癌	Phase II
AMG 337	Amgen	c-Met 抑制剂	胃癌	Phase II
foretinib	GlaxoSmithKline	c-Met 抑制剂	非小细胞肺癌	Phase II
BMS-754807	Bristol-Myers Squibb	IGF-1R/InsR/c-Met 抑制剂	实体瘤	Phase II 失败
golvatinib	Eisai Inc	c-Met/KDR 抑制剂	实体瘤	Phase I/II
EMD 1214063	Merck KGaA	c-Met 抑制剂	实体瘤	Phase I
SAR125844	Sanofi	c-Met 抑制剂	实体瘤	Phase I
AMG 208	Amgen	c-Met 抑制剂	实体瘤	Phase I 搁置

BMS-777607	Bristol-Myers Squibb	Alx/RON/c-Met 抑制剂	实体瘤	Phase I 失败
JNJ-38877605	Johnson & Johnson	c-Met 抑制剂	肿瘤	Phase I 失败
PF-04217903	Pfizer	c-Met 抑制剂	肿瘤	Phase I 失败
BMS-817378	Bristol-Myers Squibb	KDR/c-Met 抑制剂	肿瘤	Phase I 失败
MK-2461	Merck	c-Met/KDR 抑制剂	肿瘤	Phase I 失败

1.7. ALK 抑制剂

ALK 通过基因融合而激活致癌,70-80%间变性大细胞淋巴瘤存在 NPM-ALK 融合,6.7%的非小细胞肺癌存在 EML4-ALK 融合。FDA 批准的第一个 ALK 抑制剂是克唑替尼,用于治疗 ALK 阳性非小细胞肺癌,但克唑替尼对 c-Met、RON 也有抑制作用。

第二代 ALK 抑制剂不再抑制 c-Met,能够克服克唑替尼耐药性,ceritinib、alectinib 都获得了 FDA 突破性药物资格。国内自主研发的 ALK 抑制剂有江苏豪森的氟卓替尼、北京赛林泰的 CT-707。

新药	研发企业	靶点	主要适应症	状态
克唑替尼	Pfizer	ALK/c-Met 抑制剂	ALK 阳性 NSCLC	2011 年上市
ceritinib	Novartis	ALK 抑制剂	ALK 阳性 NSCLC	2014 年上市
alectinib	Chugai Pharma/Roche	ALK 抑制剂	ALK 阳性 NSCLC	2014 年上市
AP26113	Ariad Pharma	ALK 抑制剂	ALK 阳性 NSCLC	Phase II
ASP3026	Astellas	ALK 抑制剂	肿瘤	Phase I

1.8. Aurora 激酶抑制剂

Aurora 激酶是调控细胞有丝分裂的一类丝氨酸/苏氨酸激酶,哺乳动物有 Aurora A、Aurora B、Aurora C 三种亚型,各药企研发了 pan-Aurora 抑制剂,也研发了选择性的 Aurora A 抑制剂和 Aurora B 抑制剂,但基本都在早期临床宣布失败。

新药	研发企业	靶点	主要适应症	状态
alisertib	Takeda	Aurora A 抑制剂	外周T细胞淋巴瘤	Phase III
tozasertib	Merck	pan-Aurora 抑制剂	白血病、NSCLS	Phase II 失败
barasertib	AstraZeneca	Aurora B 抑制剂	急性粒细胞白血病	Phase II 失败
MLN8054	Takeda	Aurora A 抑制剂	肿瘤	Phase I 失败
TAK-901	Takeda	Aurora A/B 抑制剂	肿瘤	Phase I 失败
AMG 900	Amgen	pan-Aurora 抑制剂	肿瘤	Phase I 失败
PF-03814735	Pfizer	Aurora A/B 抑制剂	肿瘤	Phase I 失败
GSK1070916	GlaxoSmithKline	Aurora B/C 抑制剂	肿瘤	Phase I 失败
MK-5108	Merck	Aurora A 抑制剂	肿瘤	Phase I 失败

1.9. CDK 抑制剂

CDK 全称细胞周期蛋白依赖性激酶,有 CDK1-11 等多个亚型,能够与细胞周期蛋白结合,调节细胞周期。Palbociclib、LEE011、LY2835219 等三个 CDK4/6 抑制剂都已进入后期开发,用于治疗乳腺癌,江苏恒瑞自主研发的 SHR6390 也已申报临床。

新药	研发企业	靶点	主要适应症	状态
palbociclib	Pfizer	CDK4/6 抑制剂	乳腺癌	NDA
LEE011	Novartis	CDK4/6 抑制剂	乳腺癌	Phase III
LY2835219	Eli Lilly	CDK4/6 抑制剂	乳腺癌	Phase III
roniciclib	Bayer	Pan-CDK 抑制剂	小细胞肺癌	Phase II
dinaciclib	Merck	CDK1/2/5/9 抑制剂	肿瘤	Phase II 失败
BMS-387032	BMS/Sunesis Pharma	CDK2 抑制剂	肿瘤	Phase I 失败
AZD5438	AstraZeneca	CDK1/2/9 抑制剂	肿瘤	Phase I 失败

1.10. ChK 抑制剂

ChK 是 checkpoint kinase 的缩写,有 ChK1 和 ChK2 两种亚型,是细胞周期的关键调控子。 多家药企开发 ChK1 抑制剂用于治疗肿瘤,但大多在早期临床研究失败,目前 Genentech 的 GDC-0575 正在进行 I 期临床研究。

新药	研发企业	靶点	主要适应症	状态
LY2603618	Eli Lilly	ChK1 抑制剂	非小细胞肺癌	Phase II 失败
GDC-0575	Genentech	ChK1 抑制剂	肿瘤	Phase I
AZD7762	AstraZeneca	ChK1/2 抑制剂	实体瘤	Phase I 失败
MK-8776	Merck	ChK1 抑制剂	肿瘤	Phase I 失败
PF-477736	Pfizer	ChK1 抑制剂	肿瘤	Phase I 失败

1.11. PARP 抑制剂

PARP 全称 poly(ADP-ribose) polymerase, 它能够识别 DNA 单链断点启动修复,最初开发 PARP 抑制剂用于增强化疗药物的疗效,后来主要针对 DNA 修复缺陷型癌症。2011-2012 年 olaparib 和 iniparib 的临床研究受挫,PARP 抑制剂的研发走冷,但随着 olaparib、veliparib 进入 III 期临床,iniparib 被证明不是真正的 PARP 抑制剂,这类药物的研发复苏[3]。2013 年 11 月德国 1.7 亿欧元收购百济神州开发的 PARP 抑制剂 BeiGene-290,目前该药已经进入 I 期临床。

新药	研发企业	靶点	主要适应症	状态
olaparib	AstraZeneca	PARP1/2 抑制剂	乳腺癌、卵巢癌	Phase III
veliparib	AbbVie	PARP1/2 抑制剂	乳腺癌、NSCLC	Phase III
rucaparib	Pfizer/Clovis Oncology	PARP 抑制剂	卵巢癌	Phase III
niraparib	Merck/Tesaro	PARP 抑制剂	卵巢癌	Phase III
iniparib	Sanofi	PARP1 抑制剂	三阴性乳腺癌	Phase III 失败
BeiGene-290	Merck KGaA	PARP 抑制剂	肿瘤	Phase I
AZD2461	AstraZeneca	PARP 抑制剂	实体瘤	Phase I 失败

1.12 Bcl-2 抑制剂

Bcl-2 蛋白家族是一类重要的凋亡调节因子,包括抗凋亡蛋白(如 Bcl-2、Bcl-xL、Mcl-1)和促凋亡蛋白(如 BID、BIM、BAD、BAK、BAX、NOXA)。Bcl-2 和 Bcl-xL 在许多肿瘤中过度表达,诱导癌细胞对癌症的治疗产生耐性。

Teva 曾经将 Bcl-2 抑制剂 obatoclax 推进 III 期临床,但最终放弃了 obatoclax 的开发。Obatoclax

的 Ki 值只有 $0.22~\mu$ M,而 ABT-199 的 Ki 值小于 0.01~nM。国内江苏亚盛申报了两个 Bcl-2 抑制剂在研,其中 R-(-)-醋酸棉酚处于 II 期临床,APG-1252 处于临床前。

新药	研发企业	靶点	主要适应症	状态
ABT-199	AbbVie/Genentech	Bcl-2 抑制剂	慢性淋巴细胞白血病	Phase III
obatoclax	Cephalon/Teva	Bcl-2 抑制剂	小细胞肺癌	Phase III 失败
navitoclax	AbbVie	Bcl-2 抑制剂	慢性淋巴细胞白血病	Phase II
ABT-737	AbbVie	Bcl-2 抑制剂	肿瘤	Phase I 失败

1.13 Hedgehog 抑制剂

Hedgehog 是一条重要的癌症信号通路,由 Hedgehog 配体、Ptch/Smo 受体复合物启动,Ptch/Smo 分别由抑制癌基因 Patched 和癌基因 Smothened 编码,Ptch 对 Smo 起负调控作用,开发的药物主要是 Smo 抑制剂。

Genentech 上市了 vismodegib 用于治疗基底细胞癌,Novartis 的同类药物 sonidegib (erismodegib, LDE225)治疗基底细胞癌的 II 期试验成功,2014 年第二季度已经向欧洲递交上市申请。

新药	研发企业	靶点	主要适应症	状态
vismodegib	Genentech	smoothened 抑制剂	基底细胞癌	2012 年上市
erismodegib	Novartis	smoothened 抑制剂	基底细胞癌	NDA
BMS-833923	Bristol-Myers Squibb	smoothened 抑制剂	白血病	Phase II
PF-04449913 (Pfizer	smoothened 抑制剂	骨髓增生异常综合症	Phase II
LY2940680	Eli Lilly	smoothened 抑制剂	小细胞肺癌	Phase I/II

1.14. p53/MDM2 抑制剂

p53 是著名的抑癌基因,p53 能够促进 MDM2、MDM4 的表达,MDM2 反过来导致 p53 泛素 化降解,最终 p53 与 MDM2/MDM4 处于一个平衡状态。Roche 在 2010 年进行了一次 RG7112 的概念性探索[4],RG7112 能够诱导 p53、MDM2 的表达上调,并且对癌症患者有一定的临床获益。

新药	研发企业	靶点	主要适应症	状态
RG7112	Roche	MDM2 抑制剂	肿瘤	Phase I
RG7388	Roche	MDM2 抑制剂	肿瘤	Phase I
SAR405838	Sanofi	MDM2 抑制剂	实体瘤	Phase I
DS-3032b	Daiichi Sankyo	MDM2 抑制剂	实体瘤	Phase I

1.15 PI3K/Akt/mTOR 抑制剂

PI3K 中文名为磷脂酰肌醇 3-激酶,其主要功能是催化 PIP2 转化为 PIP3,从而激活下游信号 Akt/mTOR,而 PTEN 的功能与 PI3K 相反,它催化 PIP3 转化为 PIP2。PI3K 有 I、II、III 三大类 8 个亚型,肿瘤中最重要的是 I 类四个亚型,即 PI3Kα、PI3Kβ、PI3Kγ、PI3Kδ,都是由催化亚基(p110α、p110β、p110γ、p110δ)与调节亚基(p85)构成的杂聚体。

针对 PI3K/AKT/mTOR 信号通路的药物包括 Pan-PI3K 抑制剂、选择性 PI3K 抑制剂、雷帕

霉素类似物、mTOR 活性位点抑制剂、PI3K/mTOR 双靶点抑制剂、Akt 抑制剂。已上市的有雷帕霉素类似物 temsirolimus、everolimus 和选择性 PI3Kδ 抑制剂 idelalisib。国内自主研发的 PI3K 抑制剂有江苏恒瑞的乌咪德吉(PI3K/mTOR 双靶点抑制剂)、广州必贝特的 BEBT-908(PI3K/HDAC 双靶点抑制剂)。

新药	研发企业	靶点	主要适应症	状态
temsirolimus	Pfizer	mTOR 抑制剂	肾癌	2007 年上市
everolimus	Novartis	mTOR 抑制剂	肾癌、乳腺癌	2009 年上市
idelalisib	Gilead Sciences	PI3Kδ 抑制剂	CLL, SLL, NHL	2014 年上市
duvelisib	Infinity/AbbVie	PI3Kδ/γ 抑制剂	CLL, NHL	Phase III
ridaforolimus	Merck	mTOR 抑制剂	实体瘤	Phase III
pictilisib	Genentech	PI3K 抑制剂	乳腺癌、NSCLC	Phase II
buparlisib	Novartis	PI3K 抑制剂	乳腺癌	Phase II
BYL719	Novartis	PI3Kα 抑制剂	实体瘤	Phase II
dactolisib	Novartis	PI3K/mTOR 抑制剂	实体瘤	Phase II
apitolisib	Genentech	PI3K 抑制剂	乳腺癌、前列腺癌	Phase II
SAR245409	Sanofi	PI3K/mTOR 抑制剂	卵巢癌	Phase II
PF-05212384	Pfizer	PI3K/mTOR 抑制剂	结直肠癌	Phase II
PF-04691502	Pfizer	PI3K/mTOR 抑制剂	实体瘤	Phase II
copanlisib	Bayer	ΡΙ3Κα/β 抑制剂	NHL	Phase II
AZD5363	AstraZeneca	Akt 抑制剂	乳腺癌	Phase II
MK-2206	Merck	Akt 抑制剂	实体瘤	Phase II
ipatasertib	Genentech	Akt 抑制剂	三阴性乳腺癌	Phase II
AZD2014	AstraZeneca	mTOR 抑制剂	实体瘤	Phase II
MLN0128	Takeda	mTOR 抑制剂	乳腺癌	Phase II
CC-223	Celgene	mTOR 抑制剂	肿瘤	Phase I/II
SAR245408	Sanofi	PI3K 抑制剂	实体瘤	Phase I/II
BGT226	Novartis	PI3K/mTOR 抑制剂	实体瘤	Phase I/II 失败
GS-9820	Gilead Sciences	PI3Kδ/γ 抑制剂	CLL、NHL	Phase Ib
GDC-0032	Genentech	PI3K 抑制剂	乳腺癌	Phase I
taselisib	Genentech	PI3K 抑制剂	乳腺癌	Phase I
GDC-0084	Genentech	PI3K 抑制剂	神经胶质瘤	Phase I
SAR260301	Sanofi	PI3Kβ 抑制剂	淋巴瘤	Phase I
AMG 319	Amgen	PI3Kδ 抑制剂	血癌	Phase I
AZD8186	AstraZeneca	PI3Kβ 抑制剂	实体瘤	Phase I
AZD6482	AstraZeneca	PI3Kβ 抑制剂	血栓	Phase I 失败
AZD8055	AstraZeneca	mTOR 抑制剂	肿瘤	Phase I 失败
GDC-0349	Genentech	mTOR 抑制剂	肿瘤	Phase I 失败
GSK2636771	GlaxoSmithKline	PI3Kβ 抑制剂	实体瘤	Phase I
GSK2269557	GlaxoSmithKline	PI3Kδ 抑制剂	慢性阻塞性肺病	Phase I
GSK2126458	GlaxoSmithKline	PI3K/mTOR 抑制剂	实体瘤、IPF	Phase I
GSK2141795	GlaxoSmithKline	Akt 抑制剂	肿瘤	Phase I
GSK2110183	GlaxoSmithKline	Akt 抑制剂	多发性骨髓瘤	Phase I

MLN1117	Takeda	PI3Kα 抑制剂	肿瘤	Phase I
GSK1059615	GlaxoSmithKline	PI3K/mTOR 抑制剂	肿瘤	Phase I 失败
GSK690693	GlaxoSmithKline	Akt 抑制剂	血癌	Phase I 失败
OSI-027	Astellas	mTOR 抑制剂	肿瘤	Phase I 失败

1.16. Raf/MEK/ERK 抑制剂

Ras/Raf/MEK/ERK 是连接细胞膜受体到细胞核的一条信号通路, Raf 有 A-Raf、B-Raf、C-Raf 三个成员, MEK 有 MEK1、MEK2 两个成员, 开发的药物包括 B-Raf 抑制剂、MEK 抑制剂。 选择性 B-Raf 抑制剂、MEK 抑制剂主要用于黑素瘤,两种类型的药物可以联用,dabrafenib 还被开发用于 B-Raf V600E 突变型非小细胞肺癌,并且获得了 FDA 突破性药物资格。

百济神州自主研发了第二代 B-Raf 抑制剂 BGB-283, 也是十二五重大新药专项支持的项目, 2013 年 5 月许可给德国 Merck KGaA, 2013 年 12 月开始临床入组, 随后百济获得 500 万美元的里程金。

新药	研发企业	靶点	主要适应症	状态
vemurafenib	Genentech	B-Raf 抑制剂	黑素瘤	2011 年上市
dabrafenib	GlaxoSmithKline	B-Raf 抑制剂	黑素瘤、NSCLC	2013 年上市
trametinib	GlaxoSmithKline	MEK1/2 抑制剂	黑素瘤	2013 年上市
encorafenib	Novartis	B-Raf 抑制剂	黑素瘤	Phase III
binimetinib	Novartis	MEK1/2 抑制剂	黑素瘤	Phase III
cobimetinib	Genentech	MEK 抑制剂	黑素瘤	Phase III
pimasertib	Merck KGaA	MEK1/2 抑制剂	黑素瘤、卵巢癌	Phase II
selumetinib	AstraZeneca	MEK 抑制剂	非小细胞肺癌	Phase II
MLN2480	Takeda	Pan-Raf 抑制剂	黑素瘤	Phase I
RG7304	Chugai/Roche	Raf/MEK1 抑制剂	实体瘤	Phase I
BGB-283	Merck KGaA	B-Raf 抑制剂	肿瘤	Phase I
GDC-0994	Genentech	ERK1/2 抑制剂	实体瘤	Phase I
TAK-733	Takeda	MEK 抑制剂	实体瘤	Phase I 失败

1.17. HDAC 抑制剂

HDAC 全称组蛋白去乙酰化酶,有 HDAC1-11 等多个亚型,能够脱除组蛋白赖氨酸上的乙酰基,从而使组蛋白与 DNA 紧密结合,阻止 DNA 的转录。FDA 已经批准 vorinostat、romidepsin 两个 HDAC 抑制剂用于皮肤 T 细胞淋巴瘤,Novartis 递交了 panobinostat 用于治疗多发性骨髓瘤的上市申请。

深圳微芯自主研发了 HDAC 抑制剂西达本胺,目前已申报生产,用于治疗非霍奇金淋巴瘤,另外用于乳腺癌、非小细胞肺癌肺癌分别处于 I 期、II 期临床研究中。

新药	研发企业	靶点	主要适应症	状态
vorinostat	Merck	Pan-HDAC 抑制剂	皮肤T细胞淋巴瘤	2006 年上市
romidepsin	Celgene	HDAC1/2 抑制剂	皮肤T细胞淋巴瘤	2009 年上市
panobinostat	Novartis	Pan-HDAC 抑制剂	多发性骨髓瘤	NDA

quisinostat	Johnson & Johnson	Pan-HDAC 抑制剂	皮肤T细胞淋巴瘤	Phase II
LAQ824	Novartis	Pan-HDAC 抑制剂	肿瘤	Phase I 失败

1.18. 免疫检查点调节剂

T 细胞的激活需要两个信号,第一信号是 TCR/CD3 接收的 MHC 呈递的抗原信息,第二信号是来自细胞表面的一系列受体、配体,有抑制性的也有刺激性的,统称为免疫检查点。调节免疫检查点可以激活 T 细胞或者抑制 T 细胞,从而治疗肿瘤或自身免疫疾病。

目前已经鉴定十多种介导第二信号的配体或受体[5],新的信号通路仍在不断被发现、完善,两条经典的抑制性信号通路是 PD1 和 CTLA4,2014 年 OX40、CD27、CD137(4-1BB)三条共刺激信号而逐渐进入临床开发。

由于 anti-CTLA4 单抗、anti-PD1/PDL1 单抗临床表现非常好,被认为是靶向疗法后癌症治疗的革命,pembrolizumab、nivolumab、MPDL320A 都获得了 FDA 突破性药物资格,另外免疫检查点调节剂互相联合或与其他的抗癌药物联合也是当前的热点。

国内多个厂家的 anti-PD1/PDL1 药物处于临床前,但目前还都没有申报临床,Merck、Bristol-Myers Squibb 于 2013 年 5 月向 CFDA 递交了临床申请。中信国健 2005 年申报了 CTLA4-抗体融合蛋白,用于治疗自身免疫性疾病。

	1	1	1	
新药	研发企业	靶点	主要适应症	状态
abatacept	Bristol-Myers Squibb	CTLA4-Ig 融合蛋白	类风湿性关节炎	2005 年上市
belatacept	Bristol-Myers Squibb	CTLA4-Ig 融合蛋白	类风湿性关节炎	2011 年上市
ipilimumab	Bristol-Myers Squibb	anti-CTLA4 单抗	黑素瘤	2011 年上市
pembrolizumab	Merck	anti-PD1 单抗	黑素瘤、NSCLC	2014 年上市
nivolumab	Bristol-Myers Squibb	anti-PD1 单抗	黑素瘤、NSCLC	Phase III
tremelimumab	Pfizer/AstraZeneca	anti-CTLA4 单抗	NSCLC	Phase III
MEDI4736	AstraZeneca	anti-PDL1 单抗	NSCLC	Phase III
MPDL320A	Genentech	anti-PDL1 单抗	黑素瘤、NSCLC	Phase III
AMP-514	AstraZeneca	anti-PD1 单抗	实体瘤	Phase I
AMP-224	AstraZeneca	PDL2-Ig 融合蛋白	肿瘤	Phase I
PF-05082566	Pfizer	4-1BB 激动性单抗	肿瘤	Phase I
urelumab	Bristol-Myers Squibb	4-1BB 激动性单抗	肿瘤	Phase I
MEDI6469	AstraZeneca	OX40 激动性单抗	肿瘤	Phase I

2. 自身免疫疾病

2.1. 白介素及其受体抑制剂

白介素在免疫调节和炎症反应中发挥重要作用,抑制各种白介素可以抑制免疫应答、缓解炎症,治疗类风湿性关节炎、银屑病、克罗恩病、哮喘等与免疫、炎症相关的疾病。

新药	研发企业	靶点	主要适应症	状态
rilonacept	Regeneron	anti-IL1R 融合蛋白	CAPS	2008 年上市
canakinumab	Novartis	anti-IL1β 单抗	CAPS, SIJA	2009 年上市

dupilumab	Sanofi	anti-IL4R 单抗	哮喘	Phase II
AMG 317	Amgen	anti-IL4R 单抗	哮喘	Phase II 失败
SAR156597	Sanofi	anti-IL4/IL13 双抗	IPF	Phase II
mepolizumab	GlaxoSmithKline	anti-IL5 单抗	哮喘	Phase III
benralizumab	AstraZeneca	anti-IL5R 单抗	哮喘	Phase III
tocilizumab	Roche	anti-IL6R 单抗	RA, PJIA, SJIA	2010 年上市
sirukumab	GlaxoSmithKline	anti-IL6 单抗	类风湿性关节炎	Phase III
sarilumab	Sanofi	anti-IL6R 单抗	葡萄膜炎	Phase II
ALX-0061	Ablynx/AbbVie	anti-IL6R nanobody	类风湿性关节炎	Phase II
GSK2618960	GlaxoSmithKline	anti-IL7 单抗	自身免疫性疾病	Phase I
ustekinumab	Johnson & Johnson	anti-IL12/IL23 单抗	银屑病、PsA	2009 年上市
tralokinumab	AstraZeneca	anti-IL13 单抗	哮喘	Phase III
lebrikizumab	Genentech	anti-IL13 单抗	哮喘	Phase III
brodalumab	AstraZeneca/Amgen	anti-IL17R 单抗	银屑病、PsA	Phase III
secukinumab	Novartis	anti-IL17A 单抗	银屑病	Phase III
ixekizumab	Eli Lilly	anti-IL17A 单抗	银屑病、PsA	Phase III
RG6724	Roche	anti-IL17 单抗	自身免疫性疾病	Phase I
tildrakizumab	Merck	anti-IL23 单抗	银屑病	Phase III
MEDI2070	AstraZeneca	anti-IL23 单抗	克罗恩病	Phase II
AMG 282	Amgen	anti-IL33 单抗	哮喘	Phase I

2.2. JAK 抑制剂

Janus kinase 家族有 JAK1、JAK2、JAK3、TYK2 四个成员,其抑制剂主要用于治疗自身免疫疾病如类风湿性关节炎、溃疡性结肠炎、银屑病、克罗恩病和骨髓肿瘤,目前 FDA 已经批准两个 JAK 抑制剂: tofacitinib、ruxolitinib。JAK 抑制剂是口服抗风湿药物,很好地弥补了单抗、融合蛋白等生物制品成本高的缺点,国内自主研发的 JAK 抑制剂还很少,只有江苏恒瑞申报 SHR0302,用于治疗类风湿性关节炎。

新药	研发企业	靶点	主要适应症	状态
ruxolitinib	Incyte/Novartis	JAK1/2 抑制剂	骨髓纤维化	2011 年上市
tofacitinib	Pfizer	JAK3 抑制剂	类风湿性关节炎	2012 年上市
baricitinib	Eli Lilly	JAK1/2 抑制剂	类风湿性关节炎	Phase III
momelotinib	Gilead Sciences	JAK1/2 抑制剂	骨髓纤维化、胰腺癌	Phase III
ASP015K	Astellas	JAK1/3 抑制剂	类风湿性关节炎	Phase III
fedratinib	Sanofi	JAK2 抑制剂	骨髓增殖性肿瘤	Phase III 失败
LY2784544	Eli Lilly	JAK2 抑制剂	骨髓增殖性肿瘤	Phase II
GSK2586184	Galapagos/GSK	JAK1 抑制剂	银屑病、溃疡性结肠炎	Phase II
GLPG0634	Galapagos/AbbVie	JAK1 抑制剂	类风湿性关节炎	Phase II
AZD1480	AstraZeneca	JAK2 抑制剂	实体瘤	Phase I 失败

2.3. p38 MAPK 抑制剂

p38 MAPK 是细胞内重要的激酶, p38 有 p38α、p38β、p38γ、p38δ 四种亚型,可以由细胞外的多种应激包括紫外线、放射线、热休克、炎症因子、特定抗原及其他应激反应活化。许多

药企试图开发 p38 MAPK 抑制剂用于治疗类风湿性关节炎,但都在 II 期概念性验证上止步。

新药	研发企业	靶点	主要适应症	状态
losmapimod	GlaxoSmithKline	p38 MAPK 抑制剂	ACS, COPD	Phase II
dilmapimod	GlaxoSmithKline	p38 MAPK 抑制剂	RA, COPD	Phase II 失败
VX-702	Vertex Pharma	p38α MAPK 抑制剂	类风湿性关节炎	Phase II 失败
PH-797804	Pfizer	p38 MAPK 抑制剂	COPD	Phase II 失败
TAK-715	Takeda	p38 MAPK 抑制剂	类风湿性关节炎	Phase II 失败
pamapimod	Roche	p38 MAPK 抑制剂	类风湿性关节炎	Phase II 失败
BMS-582949	Bristol-Myers Squibb	p38 MAPK 抑制剂	类风湿性关节炎	Phase II 失败
LY2228820	Eli Lilly	p38 MAPK 抑制剂	卵巢癌	Phase I/II

2.4. Syk 抑制剂

Syk 中文名叫脾酪氨酸激酶,主要在淋巴细胞表达,传递 Fc 受体、B 细胞受体的信号,Syk 抑制剂被开发用于治疗自身免疫性疾病和血癌。

新药	研发企业	靶点	主要适应症	状态
fostamatinib	AstraZeneca	Syk 抑制剂	类风湿性关节炎	Phase III 失败
GS-9973	Gilead Sciences	Syk 抑制剂	CLL, NHL	Phase II
PRT062607	Biogen Idec	Syk 抑制剂	类风湿性关节炎	Phase II 失败
TAK-659	Takeda	Syk 抑制剂	肿瘤	Phase I

2.5. TGFβ/Smad 调节剂

TGFβ/Smad 是一条重要的信号转导通路,TGFβ (TGFβ1/2/3)与受体结合后,激活细胞内的 R-Smads (Smad1/2/5/8),r-Smads 与 Co-Smad (Smad4)结合后将信号传至细胞核内,另外 I-Smads (Smad6/7)抑制 R-Smads 和 Co-Smad 的激活。2014 年 4 月,Celgene 以 26 亿美元从 Nogra Pharma 买入 Smad7 反义核酸 GED0301,用于治疗克罗恩病、溃疡性结肠炎。

新药	研发企业	靶点	主要适应症	状态
LY2157299	Eli Lilly	TGFβR1 抑制剂	骨髓增生异常综合征	Phase II/III
LY2382770	Eli Lilly	anti-TGFβ1 单抗	糖尿病肾病	Phase II
fresolimumab	Sanofi	anti-TGFβ 单抗	肾小球硬化症	Phase II
GED0301	Nogra/Celgene	Smad7 反义核酸	炎性肠病	Phase II

3. 心血管

3.1. PCSK9 抑制剂

PCSK9是PCSK9基因编码的一种酶,能够与LDL受体结合,诱导LDL受体降解,导致LDL-C代谢减少,引起高胆固醇血症。已公布的临床数据显示,anti-PCSK9能够降低LDL-C40%以上,故而成为目前心血管领域最热门的靶点。

新药	研发企业	靶点	主要适应症	状态
alirocumab	Regeneron/Sanofi	anti-PCSK9 单抗	高胆固醇血症	Phase III
bococizumab	Pfizer	anti-PCSK9 单抗	高胆固醇血症	Phase III

evolocumab	Amgen	anti-PCSK9 单抗	高胆固醇血症	Phase III
LY3015014	Eli Lilly	anti-PCSK9 单抗	高胆固醇血症	Phase II
RG7652	Genentech	anti-PCSK9 单抗	高胆固醇血症	Phase II
ALN-PCS02	Alnylam Pharma	anti-PCSK9 siRNA	高胆固醇血症	Phase I

4. 糖尿病

2000 年以来糖尿病药物研发取得了非常的大成功, GLP-1 类似物、DPP-4 抑制剂、SGLT2 抑制剂轮番上市,最近由于短期内上市了大量新药,而且暂时未找到疗效更好的新靶点,糖尿病新药研发放缓,GPR40、GPR119、GK激动剂等虽有药企研发,但未形成大气候。

4.1. 长效 DPP-4 抑制剂和 GLP-1 类似物

国外一周一次的长效 DPP-4 抑制剂和 GLP-1 类似物已经上市或处于后期开发,国内暂时未见长效 DPP-4 抑制剂的报道,无锡和邦、江苏泰康、浙江华阳、河北常山等都申报了长效 GLP-1 类似物。

新药	研发企业	靶点	状态
albiglutide	GlaxoSmithKline	GLP-1-白蛋白融合蛋白(一周一次)	2014 年上市
dulaglutide	Eli Lilly	GLP-1-Fc ((IgG4)融合蛋白(一周一次)	2014 年上市
trelagliptin	Takeda	长效 DPP-4 抑制剂 (一周一次)	NDA
omarigliptin	Merck	长效 DPP-4 抑制剂 (一周一次)	Phase III

4.2. SGLT 抑制剂

钠-葡萄糖协同转运蛋白有 SGLT1、SGLT2 两种, SGLT1 主要分布在小肠、肾近端小管直部, 而 SGTL2 主要分布在肾近端小管曲部,90%的肾小管葡萄糖重吸收来自 SGLT2,抑制 SGLT2 可将血糖从尿液排出。

SGLT2 是继 GLP-1、DPP-4 后有一个糖尿病热门靶点,目前 FDA 已经批准 canagliflozin、dapagliflozin、empagliflozin 三个,日本批准了 ipragliflozin、luseogliflozin、tofogliflozin,江 苏恒瑞自主研发的恒格列净已经进入临床研究。

新药	研发企业	靶点	主要适应症	状态
canagliflozin	Johnson & Johnson	SGLT2 抑制剂	II 型糖尿病	2013 年上市
dapagliflozin	AstraZeneca/BMS	SGLT2 抑制剂	II 型糖尿病	2014 年上市
empagliflozin	BI/Eli Lilly	SGLT2 抑制剂	II 型糖尿病	2014 年上市
ipragliflozin	Astellas	SGLT2 抑制剂	II 型糖尿病	2014 年上市
tofogliflozin	Chugai/Roche	SGLT2 抑制剂	II 型糖尿病	2014 年上市
luseogliflozin	Taisho Pharma	SGLT2 抑制剂	II 型糖尿病	2014 年上市
ertugliflozin	Merck/Pfizer	SGLT2 抑制剂	II 型糖尿病	Phase III
LIK066	Novartis	SGLT1/2 抑制剂	II 型糖尿病	Phase II
GSK1614235	GlaxoSmithKline	SGLT1 抑制剂	II 型糖尿病	Phase I

5. 病毒感染

5.1. NS3/4A 蛋白酶、NS5A、NS5B 聚合酶抑制剂

2011年FDA批准了两个新型抗丙肝药物 telaprevir 和 boceprevir, 掀起抗丙肝药物研发高潮,

针对的靶点主要是 NS3/4A 蛋白酶、NS5A、NS5B 聚合酶。NS3/4A 蛋白酶需要与干扰素联用,2013 年第 Gilead 上市 NS5B 聚合酶抑制剂 sofosbuvir,对 GT2、GT3 型丙肝实现纯口服,2014 上半年销售额达到 58 亿美元。

目前热门的是组合抗丙肝疗法,Gilead 的 sofosbuvir+ledipasvir 二联、Merck 的 MK-5172+MK-8742 二联,AbbVie 的 ABT-450/r+ABT-267+ABT-333 三联、Bristol-Myers Squibb 的 daclatasvir+asunaprevir+BMS-791325 三联都获得了FDA 突破性药物资格,SVR12 应答率都在 95%以上。

国内自主研发的抗丙肝药物主要是 NS3/4A 蛋白酶抑制剂,包括苏州银杏树的赛拉瑞韦、杭州歌礼从 Roche 引进的 danoprevir (ASC08)、正大天晴从 BioLineRx 引进的 BL-8030,另外广东东阳光申报了 NS5A 抑制剂依米他韦,但目前仍然没有 NS5B 聚合酶抑制剂和组合抗丙肝疗法。

新药	研发企业	靶点	状态
telaprevir	Vertex Pharma	NS3/4A 蛋白酶抑制剂	2011 年上市
boceprevir	Merck	NS3/4A 蛋白酶抑制剂	2011 年上市
simeprevir	Johnson & Johnson	NS3/4A 蛋白酶抑制剂	2013 年上市
sofosbuvir	Gilead Sciences	核苷类 NS5B 聚合酶抑制剂	2013 年上市
ledipasvir	Gilead Sciences	NS5A 抑制剂	NDA
asunaprevir	Bristol-Myers Squibb	NS3/4A 蛋白酶抑制剂	NDA
daclatasvir	Bristol-Myers Squibb	NS 5A 抑制剂	NDA
ABT-450	AbbVie	NS3/4A 蛋白酶抑制剂	NDA
ombitasvir	AbbVie	NS5A 抑制剂	NDA
dasabuvir	AbbVie	非核苷类 NS 5B 聚合酶抑制剂	NDA
faldaprevir	Boehringer Ingelheim	NS3/4A 蛋白酶抑制剂	NDA
deleobuvir	Boehringer Ingelheim	NS5B 聚合酶抑制剂	Phase III 失败
vaniprevir	Merck	NS3/4A 蛋白酶抑制剂	NDA
MK-5172	Merck	NS3/4A 蛋白酶抑制剂	Phase III
MK-8742	Merck	NS5A 抑制剂	Phase III
danoprevir	Roche	NS3/4A 蛋白酶抑制剂	Phase III
GS-5816	Gilead Sciences	NS5A 抑制剂	Phase III
GS-9451	Gilead Sciences	NS3/4A 蛋白酶抑制剂	Phase II
GS-9669	Gilead Sciences	非核苷类 NS5B 聚合酶抑制剂	Phase II
tegobuvir	Gilead Sciences	非核苷类 NS5B 聚合酶抑制剂	Phase II
GSK2336805	GSK/Johnson & Johnson	NS5A 抑制剂	Phase II
mericitabine	Roche	核苷类 NS5B 聚合酶抑制剂	Phase II
setrobuvir	Roche	非核苷类 NS5B 聚合酶抑制剂	Phase II
samatasvir	Idenix/Merck	NS5A 抑制剂	Phase II
ABT-493	AbbVie	NS3/4A 蛋白酶抑制剂	Phase II
ABT-530	AbbVie	NS5A 抑制剂	Phase II
IDX21437	Idenix/Merck	核苷类 NS5B 聚合酶抑制剂	Phase I/II
IDX21459	Idenix/Merck	核苷类 NS5B 聚合酶抑制剂	Phase I

BMS-986094	Bristol-Myers Squibb	核苷类 NS5B 聚合酶抑制剂	Phase II 失败
valopicitabine	Idenix/Novartis	核苷类 NS5B 聚合酶抑制剂	Phase II 失败
GSK2878175	GlaxoSmithKline	非核苷类 NS5B 聚合酶抑制剂	Phase I
balapiravir	Roche	核苷类 NS5B 聚合酶抑制剂	Phase I 失败

5.2. TLR 调节剂

Toll-like receptor 是巨噬细胞、树突细胞表达的一种膜受体,有 TLR1 至 TLR13 等多个亚型,能够识别微生物上的保守性分子,启动先天性免疫反应。Gilead 开发 GS-9620 用于治疗 HBV、HCV 感染,而 AstraZeneca、GlaxoSmithKline 则开发 TLR 激动剂用于哮喘。

新药	研发企业	靶点	主要适应症	状态
咪喹莫特	Medicis Pharma	TLR-7 激动剂	尖锐湿疣	1997 年上市
雷西莫特	Eli Lilly	TLR-7 激动剂	生殖器疱疹	Phase III 失败
TAK-242	Takeda	TLR-4 抑制剂	脓毒症	Phase III 失败
GS-9620	Gilead Sciences	TLR-7 激动剂	丙肝、乙肝	Phase II
GSK2245035	GlaxoSmithKline	TLR-7 激动剂	哮喘	Phase II
AZD1419	AstraZeneca	TLR-9 激动剂	哮喘	Phase I
AZD8848	AstraZeneca	TLR-7 激动剂	哮喘	Phase I

6. 神经系统疾病

6.1. β/γ-secretase 抑制剂

淀粉样前体蛋白经过 β-secretase (BCAE)、 γ -secretase 两次剪切转变为不溶性的 Aβ40/42,引起淀粉样蛋白斑,抑制 β-secretase 或 γ -secretase 可能对阿尔兹海默病有效。另外 γ -secretase 还负责剪切 Notch 受体产生 NICD,因此通过抑制 γ -secretase 抑制 Notch 信号通路,具有治疗肿瘤的潜力。

新药	研发企业	靶点	主要适应症	状态
semagacestat	Eli Lilly	γ-secretase 抑制剂	阿尔兹海默病	Phase III 失败
MK-8931	Merck	β-secretase 抑制剂	阿尔兹海默病	Phase II/III
AZD3293	AstraZeneca/Lilly	β-secretase 抑制剂	阿尔兹海默病	Phase II/III
E2609	Eisai/Biogen Idec	β-secretase 抑制剂	阿尔兹海默病	Phase II
RO4929097	Roche	γ-secretase 抑制剂	NSCLC	Phase II 失败
avagacestat	Bristol-Myers Squibb	γ-secretase 抑制剂	阿尔兹海默病	Phase II 失败
MK-0752	Merck	γ-secretase 抑制剂	实体瘤	Phase I/II
LY2811376	Eli Lilly	β-secretase 抑制剂	阿尔兹海默病	Phase I 失败
AZD3839	AstraZeneca	β-secretase 抑制剂	阿尔兹海默病	Phase I 失败

6.2. Amyloid beta 单抗

β-淀粉样蛋白是淀粉样前蛋白经 β-secretase、γ-secretase 两次剪切后产生的不溶性蛋白,长度是 33-36 个氨基酸残基,最常见的形式是 Aβ40 和 Aβ42。Anti-Aβ 单抗能够清除 β-淀粉样蛋白,因此被开发用于治疗阿尔兹海默病病,目前的临床数据显示疗效相对轻微。

新药	研发企业	靶点	主要适应症	状态
	71724	1-1		V

solanezumab	Eli Lilly	anti-Aβ 单抗	阿尔兹海默病	Phase III
gantenerumab	Genentech	anti-Aβ 单抗	阿尔兹海默病	Phase III
crenezumab	Genentech	anti-Aβ 单抗	阿尔兹海默病	Phase III
GSK933776	GlaxoSmithKline	anti-Aβ 单抗	视网膜萎缩	Phase III
bapineuzumab	J & J/Pfizer	anti-Aβ 单抗	阿尔兹海默病	Phase III 失败
BAN2401	Eisai/Biogen Idec	anti-Aβ 单抗	阿尔兹海默病	Phase II
SAR228810	Sanofi	anti-Aβ 单抗	阿尔兹海默病	Phase I
MEDI1814	AstraZeneca	anti-Aβ 单抗	阿尔兹海默病	Phase I

6.3. Anti-CGRP 单抗

CGRP 全称降钙素基因相关肽,由 37 个氨基酸残基组成,具有很强的血管舒张作用,偏头痛患者 CGRP 水平上调。CGRP 与其受体结合,可引起血管舒张、肥大细胞脱颗粒、血浆溢出,进而导致偏头痛。

新药	研发企业	靶点	主要适应症	状态
LBR-101	Labrys/Teva	anti-CGRP 单抗	慢性偏头痛	Phase II
AMG 334	Amgen	anti-CGRP 单抗	慢性偏头痛	Phase II
LY2951742	Eli Lilly	anti-CGRP 单抗	慢性偏头痛	Phase II

6.4. 谷氨酸受体调节剂

谷氨酸是一种兴奋性的神经递质,其受体分为离子型受体和代谢型受体,离子型受体包括 NMDA 受体、AMPA 受体,介导快信号传递;代谢型受体包括 mGluR1 至 mGluR8,介导慢的 生理反应。

目前已经上市多个 AMPA 受体激动剂(奥拉西坦、吡拉西坦、阿尼西坦)、AMPA 受体拮抗剂(吡仑帕奈)、NMDA 受体拮抗剂(氯胺酮、苯环利定),现在的研究热点是代谢型受体调节剂。

新药	研发企业	靶点	主要适应症	状态
LY2140023	Eli Lilly	mGluR2/3 激动剂	精神分裂症	Phase III 失败
mavoglurant	Novartis	mGluR5 拮抗剂	脆性 X 综合征	Phase II/III
basimglurant	Roche	mGluR5 拮抗剂	抑郁症	Phase II
decoglurant	Roche	mGluR2/3 拮抗剂	抑郁症	Phase II
AZD6423	AstraZeneca	NMDA 拮抗剂	自杀倾向	Phase I

- [1] J Clin Oncol. 2014, 32:5s, (suppl; abstr 11111).
- [2] Nat Rev Drug Discov. 2014, 13, 563-565.
- [3] Nat Rev Drug Discov. 2013, 12, 725-727.
- [4] Lancet Oncol. 2012, 13, 1133-1140.
- [5] Nat Rev Cancer. 2012, 12, 252-264.

本文作者: 疑夕(zhiqiangbai@outlook.com; http://yixi.blog.com/; http://weibo.com/bzq1123/)